OCR Maths S1 Topic Questions from Papers Discrete Random Variables Answers

PhysicsAndMathsTutor.com

1	(i)	$k = 1 - \left(\frac{1}{4} + \frac{1}{5} + \frac{2}{5} + \frac{1}{10}\right)$ $\frac{1}{20}$	M1 A1	2	Use $\Sigma p = 1$ or 0.05
	(ii)	$E(X) = \Sigma x p(x)$ = -1/10 $\Sigma x^2 p(x) = 2$ $\Sigma x^2 p(x) - \mu^2$ = 1.99	M1 A1 M1 M1 A1	5	Use $\Sigma xp(x)$ with a value for k and correct signs -1/10 or -0.1 only Attempt $\Sigma x^2 p(x)$ } or $\Sigma (x - \mu)^2 p(x)$: M2 Subtract their μ^2 } Answer, 1.99 or 1 99/100

(Q4, Jan 2005)

2 (i)	$\frac{1}{3} + \frac{1}{4} + p + q = 1$ oe	B1	
	$0 x^{1}/_{3} + 1 x^{1}/_{4} + 2p + 3q = 1^{1}/_{4}$ oe	B1	
	equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii) $p = \frac{1}{4}, q = \frac{1}{6}$ oe	M1 A1A1 5	allow one error. ft their equns subst or subtr not nec'y
(ii)	$\sum x^2 p \text{ (not } /4 \text{ or } /3 \text{ etc}) \qquad (= 2^3/_4) - (1^1/_4)^2$	M1 M1	≥ 2 non-zero terms correct. dep +ve result indep if +ve result or $x-1^{1/4}p$ (≥ 2 (non-0) terms correct): M2 ft (i) (0≤ p, q <1) or letters p, q both M1s
	$= 1.1875$ or $1^{3}/_{16}$ oe	A1	cao
	$sd = \sqrt{(their 1.1875)} = 1.09 (3 sfs)$	B1f 4	dep 1st M1 & (+ve no.) eg $\sqrt{2.75} = 1.66$
Total		9	

physicsandmathstutor.com

(Q5, June 2006)

3 (i)	$1 - ({}^{3}/_{10} + {}^{1}/_{5} + {}^{2}/_{5})$	M1		or $(^{3}/_{10} + ^{1}/_{5} + ^{2}/_{5}) + p = 1$
	$^{1}/_{10}$	A1	2	
ii	$\frac{3}{10} + 2 \text{ x}^{-1}/_5 + 3 \text{ x}^{-2}/_5$	M1		$\div 4 \text{or6} \Rightarrow M0A0$
	$^{19}/_{10}$ oe	A1	2	
Total		4		

(Q1, Jan 2007)

4	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	≥ 2 non-zero terms correct eg $\div 4$: M0
	= 2(.0)	A1	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	M1	≥ 2 non-zero terms correct $\div 4$: M0
	-2^2	M1	Indep, ft their µ. Dep +ve result
	= 1 physicsandmat	hstµtor.co	m
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4$:M2
			$\geq 2 \text{ non-0 correct: } M1 \div 4: M0$
Total		5	

⁽Q1, June 2007)

5 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2		$0.2^2 \text{ or } 0.7 \times 0.1:$ M1 ₂
	= 0.18 AG	A1	3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1		\geq 2 terms correct (excl 0×0.49)
				\div 5 (or 4 or 10 etc): M0
	= 0.8 oe	A1		
	$0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	M1		≥ 2 terms correct (excl $0^2 \times 0.49$)
	- "0.8" ²	M1		dep +ve result
	= 0.88 oe	A1	5	cao
				$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
				$0.8^{2} \times 0.49 + 0.2^{2} \times 0.28 + 1.2^{2} \times 0.18 + 2.2^{2} \times 0.04 + 3.2^{2} \times 0.01$
				SC Use original table, 0.4:B1 0.44: B1
Total		8		

(Q1, Jan 2009)

4 6 3 4 3 2

6 (i)	$\Sigma x \div 11$	M1	
- (-)	70	A1	
	Σx^2 attempted	M1	$\sum (-2)^2$
	$\sum_{n=1}^{\infty} \frac{1}{n}$		\geq 5 terms, or $\sum (x-x)$
	$\sqrt{\frac{\sum x^2}{\sum x^2}} - \overline{x}^2 = \sqrt{(\frac{54210}{11} - 70^2)}$ or $\sqrt{28.18}$ or		$\sum (x - \overline{x})^2$ (310)
	V 11	A1	or $\sqrt{\frac{-11}{11}} = \sqrt{\frac{310}{11}}$ or $\sqrt{28.18}$
	5.309		ie correct substa or result
			le concet substit of result
	(= 5.31) AG	4	If $\times {}^{11}/_{10}$: M1A1M1A0
ii	Attempt arrange in order	M1	
	med = 67	A1	
	74 and 66	M1	or (72.5 – 76.5) – (65.5 – 66.5) incl
	IQR = 8	A1 4	must be from $74 - 66$
			iii, iv & v: ignore extras
iii	no (or fewer) extremes this year oe	B1 1	fewer high &/or low scores
	sd takes account of all values		highest score(s) less than last year
	sd affected by extremes		
	less spread tho' middle 50% same		Not less spread or more consistent
	less spread tho' 3 rd & 9 rd same or same gap		Not range less
· · · · · · · · · · · · · · · · · · ·		D 1 1	
1V	sd measures spread or variation or	BLI	sd less means spread is less oe
	consistency oe		or marks are closer together oe
	more consistent more similar	D1 1	allow loss varianza
v	closer together, nearer to mean	DII	
	loss sproad		Not range loss
	less spread		Not highest & lowest closer
			Not ingliest & lowest closer
Total		11	

(Q6, June 2009)

physicsandmathstutor.com

7 (i)	$(0x\frac{1}{2}) + 1x\frac{1}{4} + 2x\frac{1}{8} + 3x\frac{1}{8}$	M1		≥ 2 non-zero terms seen
	$=\frac{7}{8}$ or 0.875 oe	A1		If ÷3 or 4 M0M0M1(poss)
	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^{2} \times \frac{1}{8} + 3^{2} \times \frac{1}{8} (= 1\frac{7}{8})$	M1		\geq 2 non-zero terms seen
	$-("\frac{7}{8}")^2$	M1		dep +ve result
	$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1	5	M1 all4 (x-0.875) ² terms seen. M1 mult $p, \sum A1 1.11$
(ii)	Bin stated or implied 0.922 (3 sfs)	M1 A1	2	Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ (<i>n</i> + <i>m</i> =10, <i>n</i> , <i>m</i> ≠1) or10C4 or 5(or 4 or 6) terms correct
(iii)	$n = 10 \& p = \frac{1}{8}$ stated or implied	M1		
	$^{10}C_4 \times \frac{7}{8}^6 \times \frac{1}{8}^4$ = 0.0230 (3 sfs)	M1 A1	3	condone 0.023
Total		[10]]	

(Q4, Jan 2010)

8 (i)	$\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$ or $\frac{1}{4c}$ or $\frac{2}{12}$	B1	or 1 out of 6 or 2 out of 12
	$\begin{array}{c} 2 & 3 & 4 & 3 & C_2 \\ \end{array} \qquad \qquad$		or $\frac{2!}{4!} \times 2$
	$\left(-\frac{1}{6}\right)$		
	$\frac{1}{4} \times \frac{2}{3} \text{ or } 2 \times \frac{1}{4} \times \frac{1}{3} \text{ or } \frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{4C_2}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one	B1 3	
	$(=\frac{1}{3} \mathbf{AG})$		or $\frac{2}{{}^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
			or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions
	P(X-5) whing as for $P(X-4)$ above		Allow other values with zero probabilities.
	or $1 - (\frac{1}{6}, \frac{1}{2} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1	
	P(X=3) wking as for $P(X=6)$ above		
	or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1	or M1 for total of their probs = 1, dep B1
	3 4 5 6		or P(X=3)= $\frac{1}{6}$, P(X=4)= $\frac{1}{3}$, P(X=5)= $\frac{1}{3}$, P(X=6)= $\frac{1}{6}$
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6} = 0e$	A1 4	Complete list of values linked to probs
iii	Σxp	M1	\geq 2 terms correct ft
	$=4\frac{1}{2}$	AI	
	Σ^2		
	$\sum x p \qquad (= 21 \frac{1}{6})$	M1	\geq 2 terms correct ft
	$-4\frac{1}{2}$, 2	MI	Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5	
Total		12	

(Q5, June 2010)

physicsandmathstutor.com

9 (i)	$(0 \times a) + 2 \times (1 - a)$	M1	or $2(1-a)$	Condone $2 \times 1 - a$ NB $2 \times (1 - a) \div 2$: M0A0
- (-)	= 2 - 2a or $2(1 - a)$ oe	A1 2	Not ISW	Eg E(X) = $2 - 2a$; $2 - 2a = 1$; $a = 0.5$: M1A0
ii	$(0 \times a) + 2^2 \times (1 - a)$	M1	or $4 - 4a$ oe	Condone $2^2 \times 1 - a$
	$-"(2-2a)"^{2}$ $= 4 - 4a - 4 + 8a - 4a^{2}$ $= 4a - 4a^{2}$ $(= 4a(1-a)) AG$	M1 A1 3	$-(i)^{2} \text{ dep contains } a; \text{ ISW; Indep mk}$ or $4(1-a) - 4(1-a)^{2}$ 4(1-a)(1-(1-a))	$\begin{array}{l} 4 - 4a - 4 \pm 8a \pm 4a^{2} \text{ or } 4 - 4a - 4 \pm 4a^{2} \text{ or equiv M1M1A0} \\ 4 - 4a - 2(1 - a)^{2} \text{ M1M1A0} \end{array}$ Must see this line, correctly obtained Careful: $4 - 4a - (2 - 2a)^{2} = 4 - 4a - (4 - 4a^{2}) = -4a + 4a^{2} = 4a(1 - a) \\ \text{M1M1A0 only} \end{array}$
	a 1-a M1 Var(X) = $a(-2+2a)^2 + 4a^2(1-a) M1$		Correct table oe	
	$A^{3} = 0^{2} + 4 + 4^{2} + 4^{3}$			
	$4a^{2} - 8a^{2} + 4a + 4a^{2} - 4a^{2}$			
L	$4a - 4a^2$ Al			
Total		5		

(Q7, Jan 2011)

PhysicsAndMathsTutor.com

10	(i)	0.1 + 0.3 + 2p + p = 1 oe p = 0.2	M1 A1 [2]		
	(ii)	$\sum xp$ = 2.7 oe	M1 A1f [2]	\geq 2 terms correct, FT <i>p</i>	eg ÷ 4: M0A0

(Q1, Jan 2012)

physicsandmathstutor.com

11	$ \begin{array}{c} \frac{1.4}{50} \qquad (= 0.028) \\ 1.5 + \frac{1.4}{50} \end{array} $	M1 M1 dep M1	$\frac{1.4 + 50 \times 1.5}{\frac{76.4}{50}} $ (= 76.4)	eg <u>1.4+1.5</u> M0M0A0
	= 1.528 or $\frac{191}{125}$ or 1.53 (3 sf)	A1	$(\Sigma x^2 - 2 \times 1.5 \times 76.4' + 50 \times 1.5^2 = 0.05)$ ($\Rightarrow \Sigma x^2 = 116.75$; no marks yet)	
	$\frac{0.05}{50} - (\frac{1.4}{50})^2$ or 0.000216 seen	M1	$\frac{0.05 + 2 \times 1.5 \times 70.4 + 50 \times 1.5}{50} - 1.528^{52}$ all correct	not $\frac{0.05}{50}$ - '1.528' ²
	$\sqrt{0.000216}$	M1	fully correct method, ie nothing added etc	
	= 0.0147 (3 sf)	A1 [6]	cao not isw	

(Q2, June 2012)

physicsandmathstutor.com

12	(i)	2k + 4k + 6k + 8k = 1	M1	or $2 + 4 + 6 + 8 = 20$ M1	Must see correct wk'g for $k = \frac{1}{20}$,
		$k = \frac{1}{20}$ AND $6 \times \frac{1}{20} = \frac{3}{10}$ AG	A1	Must see both for A1	otherwise M0A0
					NB $k \times 6 = \frac{3}{10} \implies k = \frac{1}{20}$ M0A0
				or $2k + 4k + 6k + 8k = 20k$ M1	10 20
				$P(X=6) = \frac{6k}{20k} = \frac{3}{10}$ A1	(even if tested by showing that $k = \frac{1}{20}$
				20k 10	gives $\Sigma p=1$)
					Just showing $\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} = 1$
			[2]		M0A0
	(ii)	$2 \times \frac{1}{10} + 4 \times \frac{2}{10} + 6 \times \frac{3}{10} + 8 \times \frac{4}{10}$ oe	M1	\geq 3 terms correct ft their values of p,	Allow i.t.o. k for M1 \div 4 M0
		10 10 10 10		dep $\Sigma p = 1$	
		= 6	A1	cao	
		$2^2 \times \frac{1}{10} + 4^2 \times \frac{2}{10} + 6^2 \times \frac{3}{10} + 8^2 \times \frac{4}{10}$ oe (= 10)	M1	> 3 terms correct: ft their values of p:	Allow ito k for M1M1 ± 4 M0
		10 10 10 10 10	1111	\geq 5 terms correct, it then values of p , den $\sum n = 1$	NOT $m^2 \div 4$
		'6 ¹²	MI	dcp 2p = 1	101 - m + 4
		- 0	NI I	It their values of p; dep +ve result & $2p = 1$	V4 = 2 lose final A1, not ISW, unless
				cao	labelled sd
		= 4	A1		
			[5]		

(Q1, Jan 2013)